Characterization and analysis of edges in piecewise smooth functions
نویسندگان
چکیده
The analysis and detection of edges is a central problem in applied mathematics and image processing. A number of results in recent years have shown that directional multiscale methods such as continuous curvelet and shearlet transforms offer a powerful theoretical framework to capture the geometry of edge singularities, going far beyond the capabilities of the conventional wavelet transform. The continuous shearlet transform, in particular, provides a precise geometric characterization of edges in piecewise constant functions in R and R, including corner points. However, a question has been raised frequently: What happens if the function is piecewise smooth and not just piecewise constant? Clearly, a piecewise smooth function is a much more realistic model of images with edges. In this paper, we extend the characterization results previously known and show that, also in the case of piecewise smooth functions, the continuous shearlet transform can detect the location and orientation of edge points, including corner points, through its asymptotic decay at fine scales. The new proof introduces some innovative technical constructions to deal with the more challenging problem. The new results set the theoretical groundwork for the application of the shearlet framework to a wider class of problems from image processing.
منابع مشابه
Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images
With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...
متن کاملFilters, mollifiers and the computation of the Gibbs phenomenon
We are concerned here with processing discontinuous functions from their spectral information. We focus on two main aspects of processing such piecewise smooth data: detecting the edges of a piecewise smooth f , namely, the location and amplitudes of its discontinuities; and recovering with high accuracy the underlying function in between those edges. If f is a smooth function, say analytic, th...
متن کاملCharacterization of Piecewise Smooth Images with Wavelets: Application to Noise Variance Estimation
We propose a novel approach to the characterization of geometric regions by use of wavelet coefficients. We show that in the absence of noise, geometric regions with edges behave differently from other regions as far as the evolution of their wavelet coefficients through scales is concerned. We use this particularity to identify piecewise smooth subimages in a noisy context on which we perform ...
متن کاملClassification of Edges using Compactly Supported Shearlets
We analyze the detection and classification of singularities of functions f = χB , where B ⊂ R and d = 2, 3. It will be shown how the set ∂B can be extracted by a continuous shearlet transform associated with compactly supported shearlets. Furthermore, if ∂S is a d−1 dimensional piecewise smooth manifold with d = 2 or 3, we will classify smooth and non-smooth components of ∂S. This improves pre...
متن کاملHYBRID FUNCTIONS APPROACH AND PIECEWISE CONSTANT FUNCTION BY COLLOCATION METHOD FOR THE NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
In this work, we will compare two approximation method based on hybrid Legendre andBlock-Pulse functions and a computational method for solving nonlinear Fredholm-Volterraintegral equations of the second kind which is based on replacement of the unknown functionby truncated series of well known Block-Pulse functions (BPfs) expansion
متن کامل